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Lecture 3: Multiple Life and Multiple
Decrement Models



Multiple Life Models

To this point, all of the products we’ve dealt with were based on
the life status (alive / dead or multi-state) of a single individual.

However, in order to deal with products involving multiple lives, we
need more complex models.

These future lifetimes may be dependent or independent.

The force of transition from state i to state j based on the joint life
statuses of (x) and (y) is denoted by µij

xy or µij
x :y , with the latter

being preferred when we have numerical values for x and/or y .
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Joint Life Model
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The model above could be used in cases where cash flows depend
on the status of two lives (x) and (y). If the model allows a
transition from state 0 directly to state 3, it’s known as a
common shock model.
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Traditional Multiple Life Status Actuarial Notation

The subscript xy denotes a status which fails upon the first of the
future lifetimes of (x) and (y) to fail. Likewise, the status xy fails
upon the failure of the second failure of (x) and (y).

We will use these statuses in the same manner we used the
single life status x and the term status n

This notation follows the same convention we used earlier for
term products and guaranteed annuities.

Then Txy is the random variable describing the time until the first
death of (x) and (y), and Txy is the RV giving the time until the
second death of (x) and (y).

Important Relationship

Tx + Ty = Txy + Txy

4



Multiple Life Probability Definitions and Relationships

µxy = force of mortality for the joint status xy

= µ01
xy + µ02

xy + µ03
xy

tpxy = P[the status xy does not fail within t years]

= P[(x) and (y) are both alive in t years]

= tp
00
xy

tqxy = P[the status xy fails within t years]

= 1→ tpxy

= P[(x) and (y) are not both alive in t years]

= tp
01
xy + tp

02
xy + tp

03
xy
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Multiple Life Probability Definitions and Relationships

tpxy = P[the status xy does not fail within t years]

= P[(x) or (y) or both are still alive in t years]

= tp
00
xy + tp

01
xy + tp

02
xy

tqxy = P[the status xy fails within t years]

= 1→ tpxy

= P[(x) and (y) are both dead in t years]

= tp
03
xy

We have the following relationship for (x) and (y):

tpx + tpy = tpxy + tpxy

Further, we define nExy = vn npxy and nExy = vn npxy
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Multiple Life Example

In the joint life model, we have the following forces of transition:

µ01
xy = 0.03 + 0.0001xy µ02

xy = 0.02 + 0.001x + 0.002y

µ03
xy = 0.01 µ13

x = 0.03 + 0.002x + 0.0003x2 µ23
y = 0.02

(a) Give an expression for µxy

(b) Calculate 10p40:50 [0.00972]

(c) Give an expression for 5p55:60
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More Multiple Life Probability Definitions and
Relationships

We also use the numbers 1, 2, ... above the individual life statuses
to indicate a specific order of status failure:

tq1
xy

= P[(x) dies before (y) and within t years]

=

∫ t

0
sp

00
xy µ

02
x+s:y+s ds

tq2
xy

= P[(x) dies after (y) and within t years]

=

∫ t

0
sp

01
xy µ

13
x+s ds

Note that we can let t be ↑ in either of these symbols.
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Insurances and Annuities Based on Multiple Lives

We can derive some relationships among the various multiple life
insurances and annuities:

Axy + Axy = Ax + Ay axy + axy = ax + ay

axy =
1→ Axy

ω
axy =

1→ Axy

ω

ax |y = ay → axy ax |y + ay |x = axy → axy
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Two Independent Lives

In the special case where we’re dealing with two future lifetimes
that are independent, many of our expressions become much
simpler. In this event, all of the forces of transition only depend on
a single life, so in our joint life model, we would have:

µ01
xy = µ23

y = µy µ02
xy = µ13

x = µx µ03
xy = 0

As a result, our transition probabilities become functions of the
individual survival probabilities:

tp
00
xy = tpx tpy tp

01
xy = tpx tqy tp

02
xy = tqx tpy tp

03
xy = tqx tqy

And for the case of independent lives, in the traditional actuarial
notation, we have:

µxy = µx + µy

tqxy = tqx tqy and tpxy = tpx tpy
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Two Independent Lives – Example

Suppose that (x) and (y) have independent future lifetimes with
µx = 0.02, µy = 0.03, and ω = 0.05.

(a) Calculate ax |y .

ax |y =

∫ →

0
e↑ωt

tp
02
xy dt =

∫ →

0
e↑ωt

tqx tpy dt = 2.50

(b) Calculate the probability that (x) dies before (y).

→q1
xy

=

∫ →

0
tp

00
xy µ

02
x+t:y+t dt =

∫ →

0
tpx tpy µx+t dt = 0.4

11



Multiple Decrement Models

Another common application of multi-state model theory is in
situations where a members of a population may leave due to one
of several di!erent causes. These so-called multiple decrement
models can applied to various situations.

These models typically have one active / alive state, where
each individual begins. An individual may leave the population
by transitioning to any of the exit states.

We usually only model a single transition out of the active
state; we either ignore or disallow transitions among the exit
states.
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Multiple Decrement Model
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Multiple Decrement Example

We issue a fully continuous whole life policy to (x). The death
benefit is $100,000, but doubles if (x) dies as a result of an
accident. No benefit or surrender value is payable if the
policyholder lapses his policy.

(a) Draw an appopriate state diagram for modeling this type of
policy.

(b) Write an expression for the probability that this policy ever
pays a benefit.

(c) Write an expression for the EPV of this insurance.
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Multiple Decrement Tables and Traditional Actuarial
Notation

The probabilities for multiple decrement models are traditionally
expressed in multiple decrement tables, which are analogous to
the mortality tables used in our alive-dead model.

We again start with some cohort of εx0 people at age x0. The
number of people remaining in the population at age x is
given by εx .

The number of people leaving at age x due to decrement i is

denoted by d (i)
x ; the total number leaving during this year is

denoted by d (ε)
x , where

d (ε)
x =

∑

i

d (i)
x

Then εx+1 = εx → d (1)
x → d (2)

x → · · ·→ d (n)
x = εx → d (ε)

x
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Sample Double Decrement Table

Here’s an except of a table with two decrements:
(e.g., decrement 1 = death; decrement 2 = retirement)

ω (1) (2)

60 1000 11 10
61 979 12 10
62 957 13 10
63 934 14 10
64 910 15 10
...

...
...

...

We can calculate that of the original 1000 members of this

population, d (2)
62 = 10 of them leave due to retirement in the third

year, and d (ε)
63 = d (1)

63 + d (2)
63 = 24 of them leave in the fourth year

for any reason.
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Multiple Decrement Tables — More Notation

We denote the probability of leaving in a given year as a result of
decrement i by

q(i)x =
d (i)
x

εx

and the probability of leaving due to any decrement as

q(ε)x =
∑

i

q(i)x =
d (ε)
x

εx

We denote the probability of surviving all decrements in a given
year by

p(ε)x = 1→ q(ε)x =
εx+1

εx
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Multiple Decrements in Continuous Models

In a continuous model, the force of failure for decrement i at age x

is denoted by µ(i)
x and the total force of failure is

µ(ε)
x = µ(1)

x + µ(2)
x + · · ·+ µ(n)

x

The probability of failing within t years due to decrement i is:

tq
(i)
x =

∫ t

0
sp

(ε)
x µ(i)

x+s ds

and the probability of failing within t due to any decrement is:

tq
(ε)
x =

∫ t

0
sp

(ε)
x µ(ε)

x+s ds

(Note that these aren’t actually new formulas; they’re just
expressed in di!erent notation.)
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Dependent and Independent Probabilities for Multiple
Decrement Models

In our multiple decrement table above, the d (i)
x values (and hence

the calculated q(i)x values) depended on the other decrements in

the table; hence, q(i)x is sometimes called a dependent probability
of decrement.

If we calculate the probability of someone age x failing due to
decrement i in the absence of other decrements, the resulting
probability is called the independent probability of decrement,
the probability of decrement in the associated single
decrement table, or sometimes the absolute rate of decrement
and is denoted by q↓(i)x .

Note that tq
↓(i)
x ↓ tq

(i)
x for any x , t, and i .

19



Formulas for Independent Probabilities in Multiple
Decrement Models

The probability of (x) still being in the population in t years in the
associated single decrement model for decrement i is denoted

tp
↓ (i)
x .

tp
↓ (i)
x = 1→ tq

↓ (i)
x tp

(ε)
x =

n∏

i=1

tp
↓ (i)
x

tp
↓ (i)
x = exp

[
→
∫ t

0
µ(i)
x+s ds

]
tp

(ε)
x = exp

[
→
∫ t

0
µ(ε)
x+s ds

]

µ(i)
x+t =

→ d
dt tp

↓ (i)
x

tp
↓ (i)
x
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Fractional Age Assumptions in Multiple Decrement Models

If we have a discrete model (i.e., a multiple decrement table), we’ll
often need to make some assumptions regarding how the
decrements act within the year:

We need this in order to get the independent failure
probabilities from the dependent ones (and vice-versa).

We also need this additional information to do calculations for
non-integral lengths of time.

Example: For the double decrement table above, calculate and

interpret q↓ (1)62 and q↓ (2)62 assuming:
(a) All retirements occur at the beginning of the year.
(b) All retirements occur at the end of the year.

(Assume in all cases that deaths happen throughout the year.)
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Uniform Distribution of Decrements in the
Multiple-Decrement Table

One option is to assume that each decrement in the multiple
decrement table is distributed uniformly over the year in the

presence of other decrements, i.e., tq
(j)
x is a linear function of t.

Under this “UDDM” assumption:

tq
(j)
x = t · q(j)x

From this assumption, we can derive the following relationships:

tq
(ε)
x = t · q(ε)x tp

(ε)
x = 1→ t · q(ε)x µ(j)

x+t =
q(j)x

1→ t · q(ε)x

tp
↓(j)
x =

(
1→ t · q(ε)x

)q(j)x /q(ω)x
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Uniform Distribution in the Associated Single-Decrement
Tables

Another option is to assume that each decrement is distributed
uniformly in its associated single decrement table, i.e., in the

absence of other decrements, so that tq
↓(j)
x is a linear function of t.

Under this “UDDS” assumption:

tq
↓(j)
x = t · q↓(j)x

From this assumption, we can derive various relationships. For
example, for a double decrement table, we have:

q(1)x = q↓(1)x

(
1→ 1

2
· q↓(2)x

)
and q(2)x = q↓(2)x

(
1→ 1

2
· q↓(1)x

)

Similar equations can be derived for triple decrement tables.
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Constant Force of Decrement Assumption

We could instead assume that the forces of decrement are constant
within the year. This assumption results in the following formulas:

tp
↓(j)
x =

[
p↓(j)x

]t
tp

(ε)
x =

[
p(ε)x

]t

tq
(j)
x =

q(j)x

q(ε)x

(
1→

[
p(ε)x

]t)

p↓(j)x =
[
p(ε)x

]q(j)x /q(ω)x
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